Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1690, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727549

RESUMO

Artificial light at night has rapidly spread around the globe over the last decades. Evidence is increasing that it has adverse effects on the behavior, physiology, and survival of animals and plants with consequences for species interactions and ecosystem functioning. For example, artificial light at night disrupts plant-pollinator interactions at night and this can have consequences for the plant reproductive output. By experimentally illuminating natural plant-pollinator communities during the night using commercial street-lamps we tested whether light at night can also change interactions of a plant-pollinator community during daytime. Here we show that artificial light at night can alter diurnal plant-pollinator interactions, but the direction of the change depends on the plant species. We conclude that the effect of artificial light at night on plant-pollinator interactions is not limited to the night, but can also propagate to the daytime with so far unknown consequences for the pollinator community and the diurnal pollination function and services they provide.


Assuntos
Ritmo Circadiano/efeitos da radiação , Plantas/efeitos da radiação , Polinização/efeitos da radiação , Animais , Insetos/fisiologia
2.
Nature ; 548(7666): 206-209, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28783730

RESUMO

Pollinators are declining worldwide and this has raised concerns for a parallel decline in the essential pollination service they provide to both crops and wild plants. Anthropogenic drivers linked to this decline include habitat changes, intensive agriculture, pesticides, invasive alien species, spread of pathogens and climate change. Recently, the rapid global increase in artificial light at night has been proposed to be a new threat to terrestrial ecosystems; the consequences of this increase for ecosystem function are mostly unknown. Here we show that artificial light at night disrupts nocturnal pollination networks and has negative consequences for plant reproductive success. In artificially illuminated plant-pollinator communities, nocturnal visits to plants were reduced by 62% compared to dark areas. Notably, this resulted in an overall 13% reduction in fruit set of a focal plant even though the plant also received numerous visits by diurnal pollinators. Furthermore, by merging diurnal and nocturnal pollination sub-networks, we show that the structure of these combined networks tends to facilitate the spread of the negative consequences of disrupted nocturnal pollination to daytime pollinator communities. Our findings demonstrate that artificial light at night is a threat to pollination and that the negative effects of artificial light at night on nocturnal pollination are predicted to propagate to the diurnal community, thereby aggravating the decline of the diurnal community. We provide perspectives on the functioning of plant-pollinator communities, showing that nocturnal pollinators are not redundant to diurnal communities and increasing our understanding of the human-induced decline in pollinators and their ecosystem service.


Assuntos
Escuridão , Poluição Ambiental/efeitos adversos , Insetos/efeitos dos fármacos , Insetos/fisiologia , Iluminação , Polinização/efeitos da radiação , Animais , Flores/crescimento & desenvolvimento , Flores/efeitos da radiação , Frutas/crescimento & desenvolvimento , Frutas/efeitos da radiação , Atividades Humanas , Desenvolvimento Vegetal/efeitos da radiação , Reprodução/efeitos da radiação , Suíça
3.
ScientificWorldJournal ; 2013: 529502, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23818825

RESUMO

Irradiated pollen technique is the most successful haploidization technique within Cucurbitaceae. After harvesting of fruits pollinated with irradiated pollen, classical method called as "inspecting the seeds one by one" is used to find haploid embryos in the seeds. In this study, different methods were used to extract the embryos more easily, quickly, economically, and effectively. "Inspecting the seeds one by one" was used as control treatment. Other four methods tested were "sowing seeds direct nutrient media," "inspecting seeds in the light source," "floating seeds on liquid media," and "floating seeds on liquid media after surface sterilization." Y2 and Y3 melon genotypes selected from the third backcross population of Yuva were used as plant material. Results of this study show that there is no statistically significant difference among methods "inspecting the seeds one by one," "sowing seeds direct CP nutrient media," and "inspecting seeds in the light source," although the average number of embryos per fruit is slightly different. No embryo production was obtained from liquid culture because of infection. When considered together with labor costs and time required for embryo rescue, the best methods were "sowing seeds directly in the CP nutrient media" and "inspecting seeds in the light source."


Assuntos
Cucumis melo/embriologia , Frutas/economia , Frutas/embriologia , Haploidia , Pólen/embriologia , Técnicas de Cultura de Tecidos/economia , Técnicas de Cultura de Tecidos/métodos , Pólen/efeitos da radiação , Polinização/efeitos da radiação , Sementes , Turquia
4.
Ann Bot ; 103(5): 715-25, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19116433

RESUMO

BACKGROUND AND AIMS: Floral scent may play a key role as a selective attractant in plants with specialized pollination systems, particularly in cases where floral morphology does not function as a filter of flower visitors. The pollination systems of two African Eucomis species (E. autumnalis and E. comosa) were investigated and a test was made of the importance of scent and visual cues as floral attractants. METHODS AND KEY RESULTS: Visitor observations showed that E. autumnalis and E. comosa are visited primarily by pompilid wasps belonging to the genus Hemipepsis. These wasps carry considerably more Eucomis pollen and are more active on flowers than other visiting insects. Furthermore, experiments involving virgin flowers showed that these insects are capable of depositing pollen on the stigmas of E. autumnalis, and, in the case of E. comosa, pollen deposited during a single visit is sufficient to result in seed set. Experimental hand-pollinations showed that both species are genetically self-incompatible and thus reliant on pollinators for seed set. Choice experiments conducted in the field and laboratory with E. autumnalis demonstrated that pompilid wasps are attracted to flowers primarily by scent and not visual cues. Measurement of spectral reflectance by flower petals showed that flowers are cryptically coloured and are similar to the background vegetation. Analysis of headspace scent samples using coupled gas chromatography-mass spectrometry revealed that E. autumnalis and E. comosa scents are dominated by aromatic and monoterpene compounds. One hundred and four volatile compounds were identified in the floral scent of E. autumnalis and 83 in the floral scent of E. comosa, of which 57 were common to the scents of both species. CONCLUSIONS: This study showed that E. autumnalis and E. comosa are specialized for pollination by pompilid wasps in the genus Hemipepsis and achieve specialization through cryptic colouring and the use of scent as a selective floral attractant.


Assuntos
Flores/química , Liliaceae/parasitologia , Odorantes , Polinização/fisiologia , Vespas/fisiologia , Animais , Cruzamento , Sinais (Psicologia) , Flores/efeitos da radiação , Cromatografia Gasosa-Espectrometria de Massas , Laboratórios , Luz , Liliaceae/embriologia , Liliaceae/efeitos da radiação , Odorantes/análise , Pólen/fisiologia , Pólen/efeitos da radiação , Polinização/efeitos da radiação , Reprodução/efeitos da radiação , Sementes/fisiologia , Sementes/efeitos da radiação , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...